

OPA2810

SBOS789A - AUGUST 2017-REVISED JUNE 2018

OPA2810 Dual Channel, 27 V, Rail-to-Rail Input/Output FET-Input Operational Amplifier

Features

Gain-Bandwidth Product: 70 MHz Small-Signal Bandwidth: 105 MHz

Slew Rate: 192 V/µs

Wide Supply Range: 4.75 V to 27 V

Low Noise:

- Input Voltage Noise: 6 nV/ $\sqrt{\text{Hz}}$ (f = 500 kHz) - Input Current Noise: 5 fA/ $\sqrt{\text{Hz}}$ (f = 10 kHz)

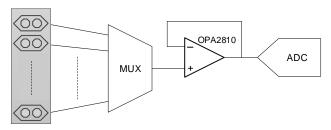
Rail-to-Rail Input and Output:

 FET Input Stage: 2 pA Input Bias Current (Typical)

High Linear Output Current: 75 mA

Input Offset: ±1.5 mV (Maximum)

Offset Drift: ±2 µV/°C (Typical)


Low Power: 3.6 mA/Channel

Extended Temperature Operation: -40°C to +125°C

2 Applications

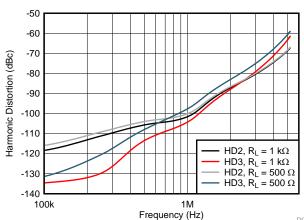
- Wideband Photodiode Transimpedance Amplifiers
- High-Z Front-Ends
- Impedance Measurements
- Power Analyzers
- Multichannel Sensor Interface
- Level Shifting and Buffering
- Optoelectronic Drivers

Multichannel Sensor Interface

3 Description

The OPA2810 is a dual-channel, FET-input, voltagefeedback operational amplifier with low input bias current. The OPA2810 is unity-gain stable with a small-signal unity-gain bandwidth of 105 MHz, and offers excellent DC precision and dynamic AC performance at a low quiescent current (I_O) of 3.6 mA per channel (typical). The OPA2810 is fabricated on Texas Instrument's proprietary, high-speed SiGe process and **BiCMOS** achieves significant performance improvements over comparable FETinput amplifiers at similar levels of quiescent power. With a gain-bandwidth product (GBWP) of 70 MHz, slew-rate of 192 V/µs, and voltage low-noise of 6 nV/√Hz, the OPA2810 is well suited for use in a wide range of high fidelity data acquisition and signal processing applications.

The OPA2810 is characterized to operate over a wide supply range of 4.75 V to 27 V, and features rail-torail inputs and outputs. The OPA2810 amplifier delivers 75 mA of linear output current, suitable for driving optoelectronics components and analog-todigital converter (ADC) inputs or buffering DAC outputs into heavy loads.


The OPA2810 is available in an 8-pin, SOT23-8 and VSSOP-8 package and is rated to work over the extended industrial temperature range of -40°C to +125°C.

Device Information⁽¹⁾

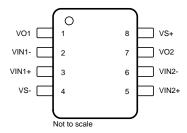
PART NUMBER	PACKAGE	BODY SIZE (NOM)
ODA2040	SOT-23 (8)	2.90 mm × 1.60 mm
OPA2810	VSSOP (8)	3.00 mm × 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Harmonic Distortion vs Frequency

Table of Contents

1	Features 1		7.2 Functional Block Diagram	25
2	Applications 1		7.3 Feature Description	27
3	Description 1		7.4 Device Functional Modes	27
4	Revision History2	8	Application and Implementation	28
5	Pin Configuration and Functions		8.1 Application Information	28
6	Specifications4		8.2 Typical Applications	33
U	6.1 Absolute Maximum Ratings	9	Power Supply Recommendations	36
	6.2 ESD Ratings	10	Layout	36
	6.3 Recommended Operating Conditions4		10.1 Layout Guidelines	
	6.4 Thermal Information		10.2 Layout Example	37
	6.5 Electrical Characteristics: 10 V		10.3 Thermal Considerations	
	6.6 Electrical Characteristics: 24 V	11	Device and Documentation Support	39
	6.7 Electrical Characteristics: 5 V		11.1 Documentation Support	
	6.8 Typical Characteristics: V _S = 10 V 14		11.2 Receiving Notification of Documentation Updat	ies 39
	6.9 Typical Characteristics: V _S = 24 V		11.3 Community Resources	39
	6.10 Typical Characteristics: V _S = 5 V		11.4 Trademarks	39
	6.11 Typical Characteristics: ±2.375 V to ±12 V Split		11.5 Electrostatic Discharge Caution	39
	Supply22		11.6 Glossary	39
7	Detailed Description25	12	Mechanical, Packaging, and Orderable	
	7.1 Overview		Information	39


4 Revision History

Changes from Original (August 2017) to Revision A			
•	Changed device status from Advance Information to Production Data	1	

5 Pin Configuration and Functions

DCN and DGK Packages 8-Pin SOT-23 and VSSOP Top View

Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION		
NAME	NO.	ITPE	DESCRIPTION		
VO1	1	0	Amplifier 1 output pin		
VIN1-	2	I	Amplifier 1 inverting input pin		
VIN1+	3	I	Amplifier 1 noninverting input pin		
VS-	4	Р	Negative power supply pin		
VIN2+	5	I	Amplifier 2 noninverting input pin		
VIN2-	6	I	Amplifier 2 inverting input pin		
VO2	7	0	Amplifier 2 output pin		
VS+	8	Р	Positive power supply pin		

⁽¹⁾ I = input, O = output, and P = power.

Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V_S	Supply voltage (total bipolar supplies) (2)			±14	V
V _{IN}	Input voltage		V _{S-} - 0.5	$V_{S+} + 0.5$	V
$V_{\text{IN},\text{Diff}}$	Differential input voltage (3)			±7	V
I	Continuous input current			±10	mA
	Continuous sutput surrent(4)	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		±40	mA
IO	Continuous output current ⁽⁴⁾	$T_A = 125^{\circ}C$		±12	mA
P_{D}	Continuous power dissipation		See Thermal Information		
T_{J}	Junction temperature			150	°C
T _{stg}	Storage temperature		- 65	125	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Floatrootatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)		V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Vs	Total supply voltage	4.75		27	V
T _A	Ambient temperature	-40	25	125	°C

6.4 Thermal Information

		OPA2810			
	THERMAL METRIC ⁽¹⁾	DCN (SOT-23)	DGK (VSSOP)	UNIT	
		8 PINS	8 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	130.9	177.2	°C/W	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	86.6	64.6	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	42.3	99.0	°C/W	
ΨЈТ	Junction-to-top characterization parameter	25.9	9.7	°C/W	
ΨЈВ	Junction-to-board characterization parameter	42.3	97.3	°C/W	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	_	_	°C/W	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

 V_S is the total supply voltage given by $V_S = V_{S+} - V_{S-}$. Equal to the lower of ± 7 V or total supply voltage.

Long-term continuous output current for electromigration limits.

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics: 10 V

Test conditions unless otherwise noted: $T_A = 25^{\circ}C$, $V_{S+} = 5$ V, $V_{S-} = -5$ V, $R_L = 1$ k Ω , input and output are biased to midsupply⁽¹⁾.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	Test Level (2)
AC PER	RFORMANCE						
		$G = 1, V_0 = 20 \text{ mV}_{PP}, R_F = 0 \Omega$		75		MHz	С
SSBW		$G = 1$, $V_o = 20 \text{ mV}_{PP}$, $R_F = 0 \Omega$, $C_L = 33 \text{ pF}$		105		MHz	С
SSBW	Small-signal bandwidth	$G = -1$, $V_0 = 20 \text{ mV}_{PP}$		50		MHz	С
		G = 2, V _o = 20 mV _{PP}		49		MHz	С
		G = 5, V _o = 20 mV _{PP}		15		MHz	С
		G = 2, V _o = 2 V _{PP}		38		MHz	С
LSBW	Large-signal bandwidth	$G = 2$, $V_o = 4$ V_{PP}		26		MHz	С
GBWP	Gain-bandwidth product	G = 11, V _o = 20 mV _{PP}		70		MHz	С
	Bandwdith for 0.1dB flatness	$G = 2, V_0 = 20 \text{ mV}_{PP}$		13		MHz	С
		$G = 2$, $V_0 = -2$ -V to 2-V step		192		V/µs	С
SR	Slew rate (20%-80%) ⁽³⁾	$G = -1$, $V_0 = -2$ -V to 2-V step		187		V/µs	С
	,,	$G = 2$, $V_0 = -4.5$ -V to 3.5-V step		193		V/µs	С
	Rise time	V _o = 200-mV step		4		ns	С
	Fall time	V _o = 200-mV step		5		ns	С
		G = 2, V _o = 2-V step		73		ns	С
	Settling time to 0.1%	G = 2, V _o = 8-V step		97		ns	С
	•	G = -1, V _o = 8-V step		96		ns	С
		G = 2, V _o = 2-V step		374		ns	С
	Settling time to 0.001%	G = 2, V _o = 8-V step		213		ns	С
		G = -1, V _o = 8-V step		163		ns	С
		$G = +1, R_F = 0 \Omega, V_o = 200 \text{ mV}_{PP}$		9/10		%	С
	Overshoot/undershoot	$G = +1, R_F = 0 \Omega, V_o = 2 V_{PP}$		4/5		%	С
	Input overdrive recovery	G = 1, R _F = 0 Ω , (V _S 0.5 V) to (V _{S+} + 0.5 V) input (see Figure 14)		44		ns	С
	Output overdrive recovery	$G = -1$, $(V_{S-} - 0.5 \text{ V})$ to $(V_{S+} + 0.5 \text{ V})$ input (see Figure 15)		55		ns	С
		$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega, V_0 = 2 \text{ V}_{PP}$		-118		dBc	С
HDO	Second-order harmonic	$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega, V_0 = 8 \text{ V}_{PP}$		-101		dBc	С
HD2	distortion	$f = 1 \text{ MHz}, R_L = 1 \text{ k}\Omega, V_0 = 2 \text{ V}_{PP}$		-99		dBc	С
		$f = 1 \text{ MHz}, R_L = 1 \text{ k}\Omega, V_o = 8 \text{ V}_{PP}$		-82		dBc	С
		$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega, V_0 = 2 \text{ V}_{PP}$		-134		dBc	С
LIDO	Third-order harmonic	$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega, V_0 = 8 \text{ V}_{PP}$		-105		dBc	С
HD3	distortion	$f = 1 \text{ MHz}, R_L = 1 \text{ k}\Omega, V_0 = 2 \text{ V}_{PP}$		-104		dBc	С
		$f = 1 \text{ MHz}, R_L = 1 \text{ k}\Omega, V_0 = 8 \text{ V}_{PP}$		-92		dBc	С
_	Lamest materials 19	f = 500 kHz, flatband		6		nV/√Hz	С
e _n	Input-referred voltage noise	f = 0.1-10 Hz integrated		0.42		μVrms	С
e _i	Input-referred current noise	f = 10 kHz		5		fA/√Hz	С
z _O	Close-loop output impedance	f = 100 kHz		0.007		Ω	С

For AC specifications, G=2 V/V, $R_F=1$ k Ω and $C_L=4.7$ pF (unless otherwise noted). Test levels (all values set by characterization and simulation): (A) 100% tested at 25°C, overtemperature limits by characterization and simulation; (B) Not tested in production, limits set by characterization and simulation; (C) Typical value only for information.

⁽³⁾ Lower of the measured positive and negative slew rate.

Electrical Characteristics: 10 V (continued)

Test conditions unless otherwise noted: $T_A = 25$ °C, $V_{S+} = 5$ V, $V_{S-} = -5$ V, $R_L = 1$ k Ω , input and output are biased to midsupply⁽¹⁾.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	Test Level ⁽²⁾
DC PER	RFORMANCE						
^	On an Inner culture and	f = DC, V _o = ±2.5 V	108	120		dB	Α
A _{OL}	Open-loop voltage gain	$T_A = -40$ °C to +125°C	108				В
		T _A = 25°C		0.1	1.5	mV	Α
V_{OS}	Input offset voltage	$T_A = -40$ °C to +85°C			2.4	mV	В
		$T_A = -40$ °C to +125°C			2.8	mV	В
	Lancet affect well-are deff	T = 25°C		1.5		μV/°C	В
	Input offset voltage drift	$T_A = -40$ °C to +125°C			13	μV/°C	В
		T _A = 25°C		2	20	pА	Α
	Input bias current	$T_A = -40$ °C to +85°C ⁽⁴⁾		20	60	pА	В
		$T_A = -40$ °C to +125°C ⁽⁴⁾		100	350	pА	В
		T _A = 25°C		1	20	pА	Α
	Input offset current	$T_A = -40$ °C to +85°C		5		pА	В
		$T_A = -40$ °C to +125°C		50		pА	В
OMBB	Common-mode rejection	$f = DC$, $T_A = 25^{\circ}C$, $V_{CM} = -3 V$ to +1 V	85	100		dB	Α
CMRR	ratio	$T_A = -40$ °C to +125°C	85			dB	В
INPUT			+		'		
	Allowable input differential voltage	See Figure 57		±7		٧	С
	Common-mode input impedance	In closed-loop configuration		12 2.5		GΩ pF	С
	Differential input capacitance	In open-loop configuration		0.5		pF	С
	Mant manitive innert valtage	$\Delta V_{OS} < 5 \text{ mV}^{(5)}$	V _{S+} + 0.2	V _{S+} + 0.3		V	Α
	Most positive input voltage	$T_A = -40$ °C to +125°C	V _{S+} + 0.2			V	В
	Mark a santhar familiana	$\Delta V_{OS} < 5 \text{ mV}^{(5)}$	V _{S-} - 0.2	V _{S-} - 0.3		V	Α
	Most negative input voltage	$T_A = -40$ °C to +125°C	V _{S-} - 0.2			V	В
	Most positive input voltage	T = 25°C (see Figure 18)	V _{S+} - 2.9	V _{S+} - 2.5		V	С
	for main-JFET stage	$T_A = -40$ °C to +125°C	V _{S+} – 3			V	С
OUTPU	T						
. ,	0	$T_A = 25^{\circ}C, R_L = 667 \Omega$	V _{S+} - 0.18	V _{S+} - 0.11		V	Α
V _{OCRH}	Output voltage range high	$T_A = -40$ °C to +125°C, $R_L = 667 \Omega$	V _{S+} - 0.2			V	В
.,	0	$T_A = 25^{\circ}C, R_L = 667 \Omega$	V _{S-} + 0.15	V _{S-} + 0.08		V	Α
V _{OCRL}	Output voltage range low	$T_A = -40$ °C to +125°C, $R_L = 667 \Omega$	V _{S-} + 0.2			V	В
I _{O(max)}	Linear output drive (sourcing and sinking)	$T_A = 25^{\circ}\text{C}, V_O = 2.65 \text{ V}, R_L = 51 \Omega, V_{OS} < 2 \text{ mV}$	52	75		mA	А
		$T_A = -40$ °C to +125°C, $V_O = 2.65$ V, $R_L = 51 \Omega$, $V_{OS} < 2 \text{ mV}$	40			mA	В
I _{SC}	Output short-circuit current	T _A = 25°C, T _{Delay} = 5 ms	95	100		mA	В
C _L	Capacitive load drive	< 1 dB peaking, $R_S = 0 \Omega$		35		pF	С
		1					

⁽⁴⁾ Maximum bias current specification is set using ±5σ limits (corresponding to 0.58 DPPM) obtained using the statistical distribution from electrical characterization over temperature of a sample set of 70 units. Maximum specification is not specified by final automated test equipment (ATE) nor by QA sample testing.

(5) Change in input offset from its value when input is biased to midsupply.

Electrical Characteristics: 10 V (continued)

Test conditions unless otherwise noted: $T_A = 25^{\circ}C$, $V_{S+} = 5$ V, $V_{S-} = -5$ V, $R_L = 1$ k Ω , input and output are biased to midsupply⁽¹⁾.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	Test Level ⁽²⁾
POWER	R SUPPLY						•
\/	Operating voltage	T _A = 25°C	4.75		27	V	Α
Vs	Operating voltage	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	4.75		27	V	В
	Quiescent current per	T _A = 25°C	3.125	3.6	4.05	mA	Α
IQ	channel	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	2.9		4.4	mA	В
DCDD	Dower cumply rejection ratio	$\Delta V_S = \pm 2 V^{(6)}$	82	100		dB	Α
PSRR	Power supply rejection ratio	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	82			dB	В
AUXILI	ARY CMOS INPUT STAGE						
	Gain-bandwidth product	V _{CM} = (V _{S+}) - 1 V		35		MHz	С
	Open-loop voltage gain	$V_{CM} = (V_{S+}) - 1 \text{ V, f} = DC, V_0 = 2 \text{ V to}$ 4 V	80	100		dB	Α
	Input-referred voltage noise	$V_{CM} = V_{S+} - 1V$, $f = 1 MHz$		21		nV/√Hz	С
		$V_{CM} = V_{S+} - 1.5 \text{ V, no-load}$			4	mV	Α
	Input offset voltage	$V_{CM} = V_{S+} - 0.5 \text{ V, no-load}$			4.8	mV	Α
	mput oncot voltage	$V_{CM} = V_{S+} - 0.5 \text{ V}, T_A = -40^{\circ}\text{C to}$ +125°C, no-load			6.4	mV	В
		V _{CM} = V _{S+} - 1.5 V		2	20	pA	Α
	Input bias current	$V_{CM} = V_{S+} - 1.5 \text{ V}, T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}$		0.15	0.5	nA	В
	Common-mode rejection ratio	$V_{CM} = V_{S+} - 1.5 \text{ V to } V_{S+} - 0.5 \text{ V}$		75		dB	В
	Power supply rejection ratio	$V_{CM} = V_{S+} - 1.5 \text{ V}, \ \Delta V_{S} = \pm 2 \text{ V}^{(6)}$		75		dB	В
CHANN	IEL MATCHING						•
	Channel-to-channel GBWP mismatch	T _A = 25°C		3		%	С
	Channel-to-channel crosstalk	f = 100 kHz		-93		dBc	С
	Input offset voltage mismatch	T _A = 25°C		0.1	2.5	mV	Α

⁽⁶⁾ Change in supply voltage from the default test condition with only one of the positive or negative supplies changing corresponding to +PSRR and -PSRR.

6.6 Electrical Characteristics: 24 V

Test conditions unless otherwise noted: $T_A = 25^{\circ}C$, $V_{S+} = 12$ V, $V_{S-} = -12$ V, $R_L = 1$ k Ω , input and output are biased to midsupply⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	Test Level ⁽²⁾
AC PER	RFORMANCE						
		$G = 1, V_0 = 20 \text{ mV}_{PP}, R_F = 0 \Omega$		75		MHz	С
SSBW	Small-signal bandwidth	$G = 1$, $V_0 = 20 \text{ mV}_{PP}$, $R_F = 0 \Omega$, $C_L = 33 \text{ pF}$		105		MHz	С
SSBW		$G = -1$, $V_0 = 20 \text{ mV}_{PP}$		51		MHz	С
		$G = 2$, $V_0 = 20 \text{ mV}_{PP}$		49		MHz	С
		G = 5, Vo = 20 mV _{PP}		15		MHz	С
I CDW	Lorgo cignal handwidth	$G = 2 V_0 = 2 V_{PP}$		38		MHz	С
LSBW	Large-signal bandwidth	G = 2 V _o = 10 V _{PP}		14		MHz	С
GBWP	Gain-bandwidth product	G = 11, V _o = 20 mV _{PP}		70		MHz	С
	Bandwdith for 0.1dB flatness	G = 2, V _o = 20 mV _{PP}		12		MHz	С
		G = 2, V _o = -2-V to 2-V step		226		V/µs	С
SR	Slew rate (20%-80%) ⁽³⁾	$G = -1$, $V_0 = -2$ -V to 2-V step		218		V/µs	С
	, ,	G = 2, V _o = -4.5-V to 3.5-V step		243		V/µs	С
	Rise time	V _o = 200-mV step		4		ns	С
	Fall time	V _o = 200-mV step		5		ns	С
	Settling time to 0.1%	G = 2, V _o = 2-V step		72		ns	С
		G = 2, V _o = 10-V step		90		ns	С
		G = -1, V _o = 10-V step		89		ns	С
		G = 2, V _o = 2-V step		370		ns	С
	Settling time to 0.001%	G = 2, V _o = 10-V step		210		ns	С
		G = -1, V _o = 10-V step		150		ns	С
	0 1 1/ 1 1 1	$G = 1, R_F = 0 \Omega, V_0 = 200 \text{ mV}_{PP}$		7.5/9		%	С
	Overshoot/undershoot	$G = 1, R_F = 0 \Omega, V_o = 2 V_{PP}$		4/5		%	С
	Input overdrive recovery	G = 1, R _F = 0 Ω , (V _S 0.5 V) to (V _S + + 0.5 V) input (see Figure 31)		66		ns	С
	Output overdrive recovery	$G = -1$, $(V_{S-} - 0.5 \text{ V})$ to $(V_{S+} + 0.5 \text{ V})$ input (see Figure 32)		30		ns	С
		$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega, V_o = 2 \text{ V}_{PP}$		-123		dBc	С
HDO	Second-order harmonic	$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega, V_0 = 10 \text{ V}_{PP}$		-113		dBc	С
HD2	distortion	$f = 1 \text{ MHz}, R_L = 1 \text{ k}\Omega, V_0 = 2 \text{ V}_{PP}$		-105		dBc	С
		$f = 1 \text{ MHz}, \text{ RL=1 } \text{k}\Omega, \text{ V}_{\text{o}} = 10 \text{ V}_{\text{PP}}$		-92		dBc	С
		$f = 100 \text{ kHz}, R_L = 1 \text{ k}Ω, V_0 = 2 \text{ V}_{PP}$		-134		dBc	С
HDa	Third-order harmonic	$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega, V_0 = 10 \text{ V}_{PP}$		-130		dBc	С
HD3	distortion	$f = 1 \text{ MHz}, R_L = 1 \text{ k}\Omega, V_0 = 2 \text{ V}_{PP}$		-103		dBc	С
		$f = 1 \text{ MHz}, R_L = 1 \text{ k}\Omega, V_0 = 10 \text{ V}_{PP}$		-86		dBc	С
_	Lamest materials 19	f = 500 kHz, flatband		6		nV/√Hz	С
e _n	Input-referred voltage noise	f = 0.1-10 Hz integrated		0.36		μVrms	С
e _i	Input-referred current noise	f = 10 kHz		5		fA/√Hz	С
z _O	Close-loop output impedance	f = 100 kHz		0.007		Ω	С

For AC specifications, G=2 V/V, $R_F=1$ k Ω and $C_L=4.7$ pF (unless otherwise noted). Test levels (all values set by characterization and simulation): (A) 100% tested at 25°C, overtemperature limits by characterization and simulation; (B) Not tested in production, limits set by characterization and simulation; (C) Typical value only for information.

⁽³⁾ Lower of the measured positive and negative slew rate.

Electrical Characteristics: 24 V (continued)

Test conditions unless otherwise noted: $T_A = 25$ °C, $V_{S+} = 12$ V, $V_{S-} = -12$ V, $R_L = 1$ k Ω , input and output are biased to midsupply⁽¹⁾.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	Test Level ⁽²⁾
DC PER	FORMANCE						
^	On an In an areliana mala	f = DC, V _o = ±8 V	108	120		dB	Α
A _{OL}	Open-loop voltage gain	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	108			dB	В
		T _A = 25°C		0.1	1.5	mV	Α
Vos	Input offset voltage	$T_A = -40$ °C to +85°C			2.4	mV	В
	,	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			2.8	mV	В
	Land offertual constant	T _A = 25°C		1.5		μV/°C	В
	Input offset voltage drift	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			13	μV/°C	В
		T _A = 25°C		2	20	pА	Α
	Input bias current	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C^{(4)}$		20	60	pА	В
		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}^{(4)}$		100	460	pА	В
		T _A = 25°C		1	20	рА	Α
	Input offset current	$T_A = -40$ °C to +85°C		5		pА	В
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		50		pА	В
CMDD	Common-mode rejection	f = DC, T _A = 25°C, V _{CM} = ±5 V	90	105		dB	Α
CMRR	ratio	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	90			dB	В
INPUT							
	Allowable input differential voltage	see Figure 57		±7		V	С
	Common-mode input impedance	In closed-loop configuration		12 2.5		GΩ pF	С
	Differential input capacitance	In open-loop configuration		0.5		pF	С
	Maratan a 200 ca Canada caltana	$\Delta V_{OS} < 5 \text{ mV}^{(5)}$	V _{S+} + 0.2	V _{S+} + 0.3		V	Α
	Most positive input voltage	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	V _{S+} + 0.1			V	В
	Mark a conflor for the other	$\Delta V_{OS} < 5 \text{ mV}^{(5)}$	V _{S-} - 0.2	V _{S-} - 0.3		V	Α
	Most negative input voltage	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	V _{S-} - 0.2			V	В
	Most positive input voltage	T _A = 25°C (see Figure 35)	V _{S+} - 2.9	V _{S+} - 2.5		V	С
	for main-JFET stage	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	V _{S+} - 3			V	С
OUTPU	Γ						
.,	Outrot valtage vale high	$T_A = 25^{\circ}C, R_L = 667 \Omega$	V _{S+} - 0.33	V _{S+} - 0.22		V	Α
V_{OCRH}	Output voltage range high	$T_A = -40$ °C to +125°C, $R_L = 667 \Omega$	V _{S+} - 0.36			V	В
	Outside all and an area and law	$T_A = 25^{\circ}C, R_L = 667 \Omega$	V _{S-} + 0.23	V _{S-} + 0.15		V	Α
V_{OCRL}	Output voltage range low	$T_A = -40$ °C to +125°C, $R_L = 667 \Omega$	V _{S-} + 0.33			V	В
	Linear output drive (sourcing	$T_A = 25^{\circ}\text{C}, \ V_o = 7.25 \ \text{V}, \ R_L = 151 \ \Omega, \ V_{OS} < 2 \ \text{mV}$	48	64		mA	А
I _{O(max)}	and sinking)	$T_A = -40$ °C to +90°C, $V_o = 7.25$ V, $R_L = 151 \Omega$, $V_{OS} < 2 \text{ mV}$	40			mA	В
I _{SC}	Output short-circuit current	T _A = 25°C, T _{Delay} = 5 ms	101	108		mA	В
C _L	Capacitive load drive	< 1 dB peaking, $R_S = 0$ Ω		35		pF	С

⁽⁴⁾ Maximum bias current specification is set using ±5σ limits (corresponding to 0.58 DPPM) obtained using the statistical distribution from electrical characterization over temperature of a sample set of 70 units. Maximum specification is not specified by final automated test equipment (ATE) nor by QA sample testing.

⁽⁵⁾ Change in input offset from its value when input is biased to midsupply.

Electrical Characteristics: 24 V (continued)

Test conditions unless otherwise noted: $T_A = 25^{\circ}C$, $V_{S+} = 12$ V, $V_{S-} = -12$ V, $R_L = 1$ k Ω , input and output are biased to midsupply⁽¹⁾.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	Test Level ⁽²⁾
POWER	R SUPPLY						
VS	On a watin a walta wa	T _A = 25°C	4.75		27	V	Α
VS	Operating voltage	$T_A = -40$ °C to +125°C	4.75		27	V	В
	Quiescent current per	$T_A = 25^{\circ}C$	3.2	3.7	4.1	mA	Α
IQ	channel	$T_A = -40$ °C to +125°C	3.0		4.5	mA	В
PSRR	Power supply rejection ratio	$\Delta V_{S} = \pm 2 \ V^{(6)}$	90	105		dB	Α
FORK	Fower supply rejection ratio	$T_A = -40$ °C to +125°C	90			dB	В
AUXILI	ARY CMOS INPUT STAGE						
	Gain-bandwidth product	$V_{CM} = V_{S+} - 1 V$		35		MHz	С
	Open-loop voltage gain	$V_{CM} = V_{S+} - 1 \text{ V, f} = DC, V_0 = 7 \text{ V to}$	80	95		dB	А
	Input-referred voltage noise	V _{CM} = V _{S+} - 1 V, f = 1 MHz		21		nV/√Hz	С
		$V_{CM} = V_{S+} - 1.5 V$, no-load			4	mV	Α
	Input offset voltage	$V_{CM} = V_{S+} - 0.5 V$, no-load			4.8	mV	Α
	input oncot voltage	$V_{CM} = V_{S+} - 0.5 \text{ V}, T_A = -40^{\circ}\text{C to} +125^{\circ}\text{C}, \text{ no-load}$			6.4	mV	В
		V _{CM} = V _{S+} - 1.5 V		2	24	pA	Α
	Input bias current	$V_{CM} = V_{S+} - 1.5 \text{ V}, T_A = -40^{\circ}\text{C to}$ +125°C		0.15	1	nA	В
	Common-mode rejection ratio	$V_{CM} = V_{S+} - 1.5 \text{ V to } V_{S+} - 0.5 \text{ V}$		75		dB	В
	Power supply rejection ratio	$V_{CM} = V_{S+} - 1.5 \text{ V}, \ \Delta V_{S} = \pm 2 \text{ V}^{(6)}$		70		dB	В
CHANN	IEL MATCHING						
	Channel-to-channel GBWP mismatch	11 25°(3		%	С
	Channel-to-channel crosstalk	f = 100 kHz		-93		dBc	С
	Input offset voltage mismatch	$T_A = 25^{\circ}C$		0.1	2.5	mV	Α

⁽⁶⁾ Change in supply voltage from the default test condition with only one of the positive or negative supplies changing corresponding to +PSRR and -PSRR.

6.7 Electrical Characteristics: 5 V

Test conditions unless otherwise noted: $T_A = 25^{\circ}C$, $V_{S+} = 5$ V, $V_{S-} = 0$ V, $V_{CM} = 1.25$ V, $R_L = 1$ k Ω , and output is biased to midsupply⁽¹⁾.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	Test Level ⁽²⁾
AC PER	RFORMANCE						
		$G = 1, V_0 = 20 \text{ mV}_{PP}, R_F = 0 \Omega$		74		MHz	С
SSRW	0 11 1 11 1 11	$G = 1$, $V_0 = 20 \text{ mV}_{PP}$, $R_F = 0 \Omega$, $C_L = 33 \text{ pF}$		103		MHz	С
SSBW	Small-signal bandwidth	$G = -1$, $V_0 = 20 \text{ mV}_{PP}$		51		MHz	С
		$G = 2$, $V_0 = 20 \text{ mV}_{PP}$		49		MHz	С
		$G = 5$, $V_0 = 20 \text{ mV}_{PP}$		15		MHz	С
LSBW	Large-signal bandwidth	$G = 2 V_0 = 2 V_{PP}$		33		MHz	С
GBWP	Gain-bandwidth product	G = 11, V _o = 20 mV _{PP}		70		MHz	С
	Bandwdith for 0.1dB flatness	$G = 2$, $V_0 = 20 \text{ mV}_{PP}$		11		MHz	С
		G = 2, V _o = -1-V to 1-V step		119		V/µs	С
SR	Slew rate (20%-80%) ⁽³⁾	$G = 2$, $V_0 = -2$ -V to 2-V step, $V_S = \pm 2.5$ V		88		V/µs	С
	Rise time	V _o = 200-mV step		4		ns	С
	Fall time	V _o = 200-mV step		5		ns	С
	Settling time to 0.1%	$G = 2$, $V_0 = -2$ -V to 0-V step, $V_S = \pm 2.5$ V		108		ns	С
	Settling time to 0.001%	$G = 2$, $V_0 = -2$ -V to 0-V step, $V_S = \pm 2.5$ V		197		ns	С
	Overshoot/undershoot	G = 1, V _o = 200 mV _{PP}		10/11		%	С
	Oversiloot/undersiloot	$G = 1$, $V_0 = -1.25$ -V to 0.75-V step		1/7		%	С
	Input overdrive recovery	G = 1, $(V_{S-} - 0.5 \text{ V})$ to $(V_{S+} + 0.5 \text{ V})$ input, $V_{S} = \pm 2.5 \text{ V}$ (see Figure 39)		71		ns	С
	Output overdrive recovery	G = -1, $(V_{S-} - 0.5 \text{ V})$ to $(V_{S+} + 0.5 \text{ V})$ input, $V_{S} = \pm 2.5 \text{ V}$ (see Figure 40)		91		ns	С
HD2	Second-order harmonic	$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega, V_0 = 2 \text{ V}_{PP}$		-102		dBc	С
1102	distortion	$f = 1 \text{ MHz}, R_L = 1 \text{ k}\Omega, V_0 = 2 \text{ V}_{PP}$		-85		dBc	С
LIDO	Third-order harmonic	$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega, V_0 = 2 \text{ V}_{PP}$		-113		dBc	С
HD3	distortion	$f = 1 \text{ MHz}, R_L = 1 \text{ k}\Omega, V_0 = 2 \text{ V}_{PP}$		-97		dBc	С
•	Input referred veltage noise	f = 500 kHz, latband		6		nV/√Hz	С
e _n	Input-referred voltage noise	f = 0.1-10 Hz integrated		0.42		μVrms	С
e _i	Input-referred current noise	f = 10 kHz		5		fA/√Hz	С
z _O	Close-loop output impedance	f = 100 kHz		0.007		Ω	С
DC PER	RFORMANCE						
^	Ones less valtes as asia	f = DC, V _o = 1.25 V to 3.25 V	104	118		dB	Α
A _{OL}	Open-loop voltage gain	$T_A = -40$ °C to +125°C	104			dB	В
		T _A = 25°C, no-load		0.1	1.5	mV	Α
V_{OS}	Input offset voltage	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			2.4	mV	В
		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			2.8	mV	В
	Land official and 199	T _A = 25°C, no-load		1.5		μV/°C	В
	Input offset voltage drift	$T_A = -40$ °C to +125°C			13	μV/°C	В

⁽¹⁾ For AC specifications, $V_{S+} = 3.5 \text{ V}$, $V_{S-} = -1.5 \text{ V}$, G = 2 V/V, $R_F = 1 \text{ k}\Omega$, $C_L = 4.7 \text{ pF}$, input and output are biased to 0 V (unless otherwise noted).

(3) Lower of the measured positive and negative slew rate.

⁽²⁾ Test levels (all values set by characterization and simulation): (A) 100% tested at 25°C, overtemperature limits by characterization and simulation; (B) Not tested in production, limits set by characterization and simulation; (C) Typical value only for information.

Electrical Characteristics: 5 V (continued)

Test conditions unless otherwise noted: $T_A = 25^{\circ}C$, $V_{S+} = 5$ V, $V_{S-} = 0$ V, $V_{CM} = 1.25$ V, $R_L = 1$ k Ω , and output is biased to midsupply⁽¹⁾.

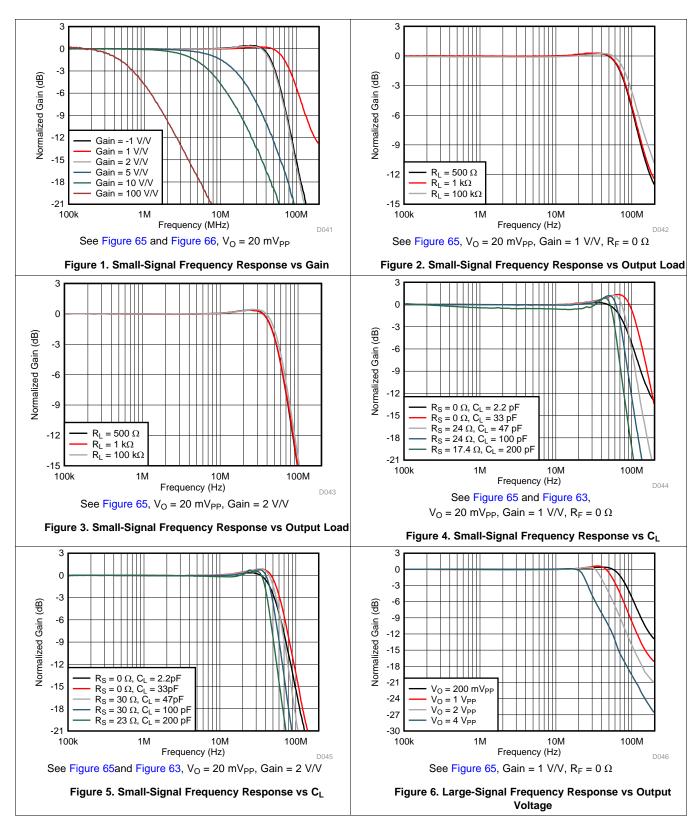
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	Test Level ⁽²⁾
		T _A = 25°C		2	20	pА	Α
	Input bias current	$T_A = -40$ °C to +85°C ⁽⁴⁾		20	50	pА	В
		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}^{(4)}$		100	340	pА	В
		T _A = 25°C		1	20	pА	Α
	Input offset current	$T_A = -40$ °C to +85°C		5		pА	В
		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		50		pА	В
CMRR	Common-mode rejection	$f = DC$, $T_A = 25$ °C, $V_{CM} = 0.75$ V to 1.75 V	78	92		dB	А
	ratio	$T_A = -40$ °C to +125°C	75			dB	В
INPUT							
	Allowable input differential voltage	See Figure 57		±5		V	С
	Common-mode input impedance	In closed-loop configuration		12 2.5		GΩ pF	С
	Differential input capacitance	In open-loop configuration		0.5		pF	С
	Mark a selffer formation have	$\Delta V_{OS} < 5 \text{ mV}^{(5)}$	V _{S+} + 0.2	V _{S+} + 0.3		V	Α
	Most positive input voltage	$T_A = -40$ °C to +125°C	V _{S+} + 0.2			V	В
	Most possible input valtage	$\Delta V_{OS} < 5 \text{ mV}^{(5)}$	V _{S-} - 0.2	V _{S-} - 0.3		V	Α
	Most negative input voltage	$T_A = -40$ °C to +125°C	V _{S-} - 0.2			V	В
	Most positive input voltage	T = 25°C (see Figure 43)	V _{S+} - 2.9	V _{S+} - 2.5		V	С
	for main-JFET stage	$T_A = -40$ °C to +125°C	V _{S+} – 3			V	С
OUTPU	Т						
\/	Output valtage range high	$T_A = 25^{\circ}C, R_L = 667 \Omega$	V _{S+} - 0.12	$V_{S+} - 0.09$		V	Α
V _{OCRH}	Output voltage range high	$T_A = -40$ °C to +125°C, $R_{LOAD} = 667 \Omega$	V _{S+} - 0.15			V	В
\ <i>/</i>	Output valtage range law	$T_A = 25^{\circ}C, R_L = 667 \Omega$	V _{S-} + 0.1	V _{S-} + 0.06		V	Α
V _{OCRL}	Output voltage range low	$T_A = -40$ °C to +125°C, $R_L = 667 \Omega$	V _{S-} + 0.15			٧	В
I _{O(max)}	Linear output drive (sourcing and sinking)	$\begin{array}{l} \text{T}_{\text{A}} = 25^{\circ}\text{C}, \ \text{V}_{\text{O}} = 1.4 \ \text{V}, \ \text{R}_{\text{L}} = 27.5 \ \Omega, \\ \text{V}_{\text{OS}} < 2 \ \text{mV}, \ \text{V}_{\text{S+}} = 3 \ \text{V} \ \text{and} \ \text{V}_{\text{S-}} = -2 \ \text{V} \end{array}$	50	64		mA	A
		$T_{A}=-40^{\circ}C$ to 125°C, $V_{O}=1.4V,$ $R_{L}=27.5~\Omega,$ $V_{OS}<2~mV,$ $V_{S+}=3~V$ and $V_{S-}=-2~V$	40			mA	В
I _{SC}	Output short-circuit current	T _A = 25°C, T _{Delay} = 5 ms	91	96		mA	В
C _L	Capacitive load drive	< 1 dB peaking, $R_S = 0 \Omega$		35		pF	С
POWER	SUPPLY						
V	Operating voltage	T _A = 25°C	4.75		27	V	Α
Vs	Operating voltage	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	4.75		27	V	В
	Quiescent current per	T _A = 25°C	3.05	3.6	4	mA	Α
IQ	channel	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	2.8		4.4	mA	В
DCDD	Device complete of setting and	$\Delta V_S = \pm 0.5 \ V^{(6)}$	80	100		dB	Α
PSRR	Power supply rejection ratio	$T_A = -40$ °C to +125°C	80			dB	В

⁽⁴⁾ Maximum bias current specification is set using ±5σ limits (corresponding to 0.58 DPPM) obtained using the statistical distribution from electrical characterization over temperature of a sample set of 70 units. Maximum specification is not specified by final automated test equipment (ATE) nor by QA sample testing.

⁽⁵⁾ Change in input offset from its value when input is biased to 0 V.

⁽⁶⁾ Change in supply voltage from the default test condition with only one of the positive or negative supplies changing corresponding to +PSRR and -PSRR.

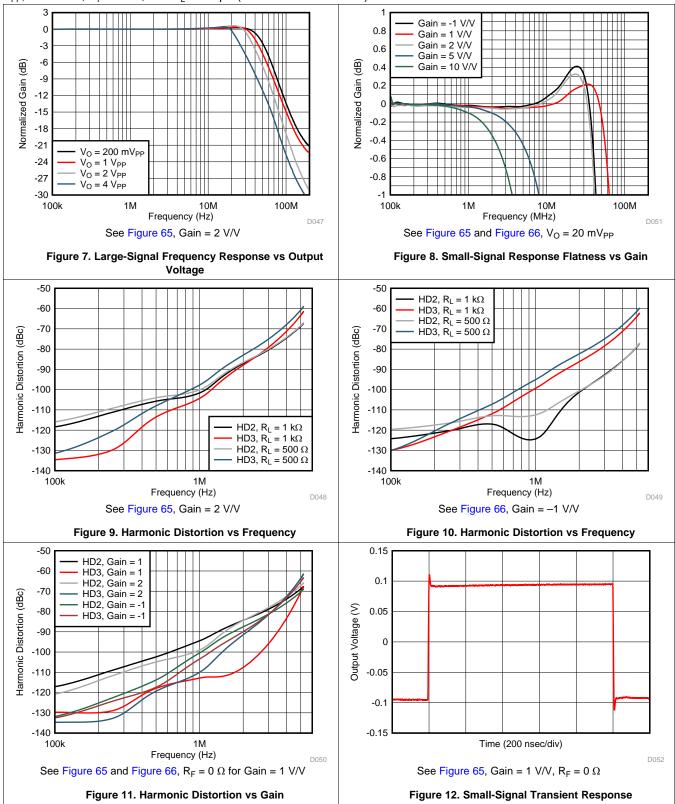
Electrical Characteristics: 5 V (continued)


Test conditions unless otherwise noted: $T_A = 25^{\circ}C$, $V_{S+} = 5$ V, $V_{S-} = 0$ V, $V_{CM} = 1.25$ V, $R_L = 1$ k Ω , and output is biased to midsupply⁽¹⁾.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	Test Level ⁽²⁾
AUXILIARY CMOS INPUT STAGE						
Gain-bandwidth product	$V_{CM} = V_{S+} - 1 V$		35		MHz	С
Open-loop voltage gain	$V_{CM} = V_{S+} - 1 \text{ V, f} = DC, V_0 = 2 \text{ V to}$ 4 V	80	100		dB	А
Input-referred voltage noise	V _{CM} = V _{S+} - 1 V, f = 1 MHz		21		nV/√Hz	С
	$V_{CM} = V_{S+} - 1.5 \text{ V, no-load}$			4	mV	Α
Input offset voltage	$V_{CM} = V_{S+} - 0.5 V$, no-load			4.8	mV	Α
	$V_{CM} = V_{S+} - 0.5 \text{ V}, T_A = -40^{\circ}\text{C} \text{ to}$ +125°C, no-load			6.4	mV	В
	V _{CM} = V _{S+} - 1.5 V		2	20	pА	А
Input bias current	$V_{CM} = V_{S+} - 1.5 \text{ V}, T_A = -40^{\circ}\text{C to}$ +125°C		0.15	0.5	nA	В
Common-mode rejection ratio	$V_{CM} = V_{S+} - 1.5 \text{ V to } V_{S+} - 0.5 \text{ V}$		75		dB	В
Power supply rejection ratio	$V_{CM} = V_{S+} - 1.5 \text{ V}, \ \Delta V_{S} = \pm 0.5 \text{ V}^{(6)}$		75		dB	В
CHANNEL MATCHING						
Channel-to-channel GBWP mismatch	T _A = 25°C		3		%	С
Channel-to-channel crosstalk	f = 100 kHz	-93			dBc	С
Input offset voltage mismatch	T _A = 25°C		0.1	2.5	mV	Α

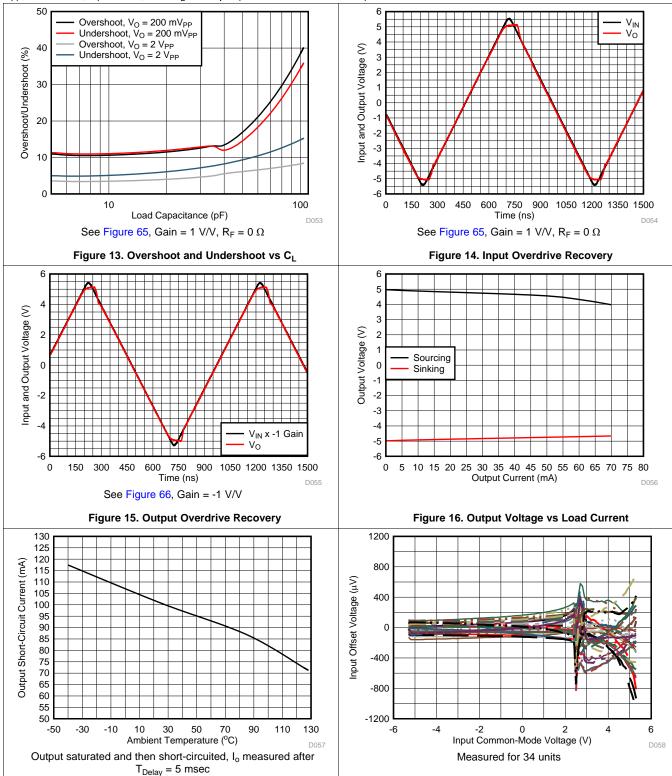
6.8 Typical Characteristics: $V_s = 10 \text{ V}$

at $V_{S+} = 5$ V, $V_{S-} = -5$ V, $R_L = 1$ k Ω , input and output are biased to midsupply, and $T_A \approx 25$ °C. For AC specifications, $V_O = 2$ V_{PP}, G = 2 V/V, $R_F = 1$ k Ω , and $C_L = 4.7$ pF (unless otherwise noted)


Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Typical Characteristics: $V_s = 10 \text{ V (continued)}$


at $V_{S+} = 5$ V, $V_{S-} = -5$ V, $R_L = 1$ k Ω , input and output are biased to midsupply, and $T_A \approx 25$ °C. For AC specifications, $V_O = 2$ V_{PP}, G = 2 V/V, $R_F = 1$ k Ω , and $C_L = 4.7$ pF (unless otherwise noted)

TEXAS INSTRUMENTS

Typical Characteristics: $V_s = 10 \text{ V}$ (continued)

at $V_{S+} = 5$ V, $V_{S-} = -5$ V, $R_L = 1$ k Ω , input and output are biased to midsupply, and $T_A \approx 25$ °C. For AC specifications, $V_O = 2$ V_{PP}, G = 2 V/V, $R_F = 1$ k Ω , and $C_L = 4.7$ pF (unless otherwise noted)

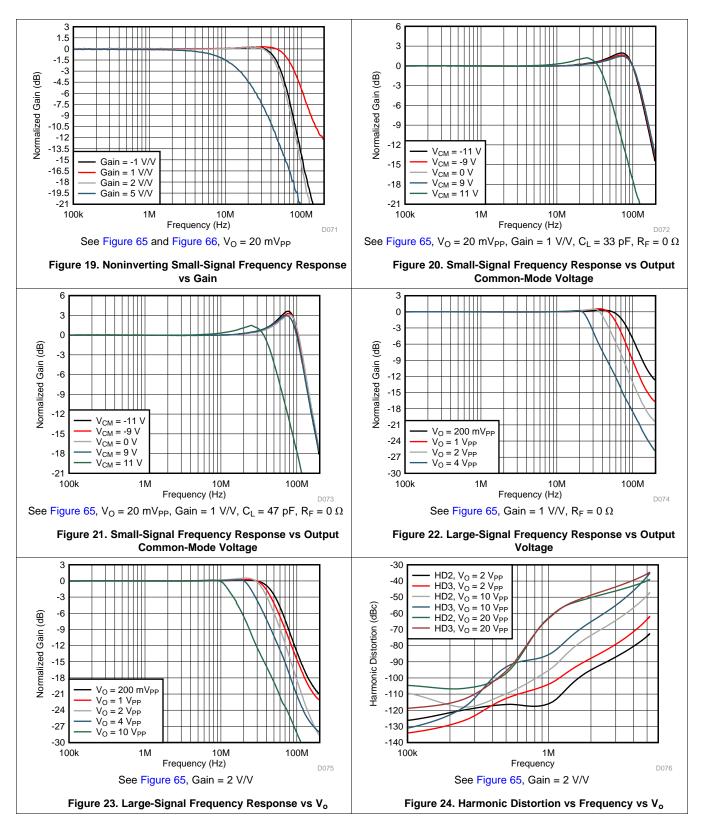
Product Folder Links: OPA2810

Submit Documentation Feedback

Figure 17. Output Short-Circuit Current vs Ambient

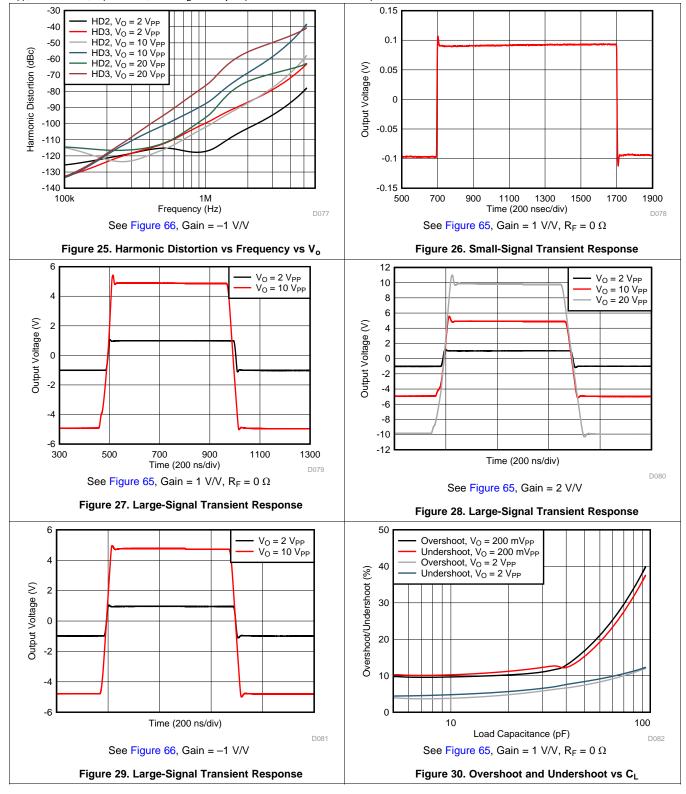
Temperature

Copyright © 2017–2018, Texas Instruments Incorporated

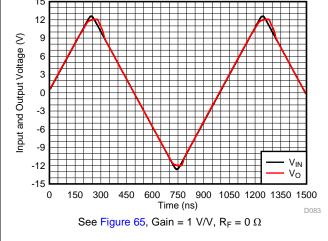

Figure 18. Input Offset Voltage vs Input Common-Mode

Voltage

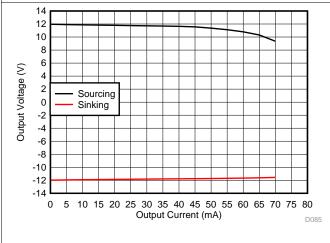
6.9 Typical Characteristics: $V_s = 24 \text{ V}$


at V_{S+} = 12 V, V_{S-} = -12 V, R_L = 1 k Ω , input and output are biased to midsupply, and $T_A \approx 25$ °C. For AC specifications, V_O = 2 V_{PP} , G = 2 V/V, R_F = 1 k Ω , and C_L = 4.7 pF (unless otherwise noted)

Typical Characteristics: $V_s = 24 \text{ V (continued)}$


at V_{S+} = 12 V, V_{S-} = -12 V, R_L = 1 k Ω , input and output are biased to midsupply, and $T_A \approx 25$ °C. For AC specifications, V_O = 2 V_{PP} , G = 2 V/V, R_F = 1 k Ω , and C_L = 4.7 pF (unless otherwise noted)

Typical Characteristics: $V_s = 24 \text{ V (continued)}$


at V_{S+} = 12 V, V_{S-} = -12 V, R_L = 1 k Ω , input and output are biased to midsupply, and T_A ≈ 25°C. For AC specifications, V_O = 2 V_{PP} , G = 2 V/V, R_F = 1 k Ω , and C_L = 4.7 pF (unless otherwise noted)

No see Figure 66, Gain = -1 V/V

Figure 31. Input Overdrive Recovery

Figure 32. Output Overdrive Recovery

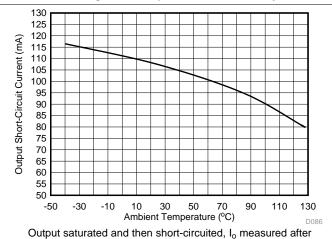


Figure 33. Output Voltage Range vs Load Current

Figure 34. Output Short-Circuit Current vs Ambient Temperature

 $T_{Delay} = 5 \text{ msec}$

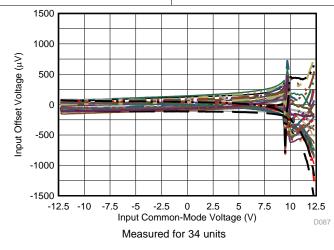
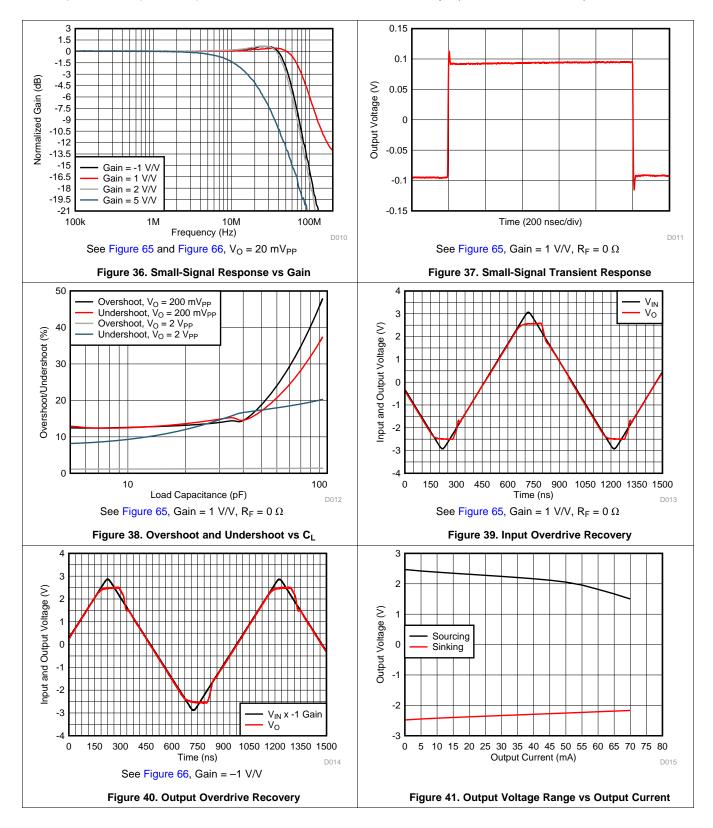



Figure 35. Input Offset Voltage vs Input Common-Mode Voltage

TEXAS INSTRUMENTS

6.10 Typical Characteristics: $V_s = 5 \text{ V}$

at V_{S+} = 5 V, V_{S-} = 0 V, V_{CM} = 1.25 V, R_L = 1 k Ω , output is biased to midsupply, and $T_A \approx 25^{\circ}C$. For AC specifications, V_{S+} = 3.5 V, V_{S-} = -1.5 V, V_{CM} = 0 V, V_{O} = 2 V_{PP}, G = 2 V/V, R_F = 1 k Ω , and C_L = 4.7 pF (unless otherwise noted)

Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Typical Characteristics: $V_s = 5 V$ (continued)

at $V_{S+}=5$ V, $V_{S-}=0$ V, $V_{CM}=1.25$ V, $R_L=1$ k Ω , output is biased to midsupply, and $T_A\approx 25^\circ C$. For AC specifications, $V_{S+}=3.5$ V, $V_{S-}=-1.5$ V, $V_{CM}=0$ V, $V_{O}=2$ V_{PP}, G=2 V/V, $R_F=1$ k Ω , and $C_L=4.7$ pF (unless otherwise noted)

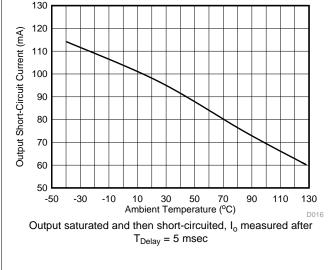
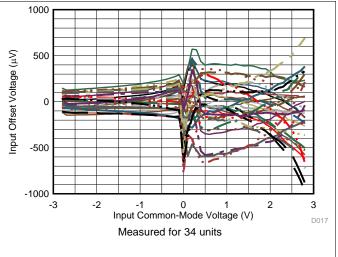
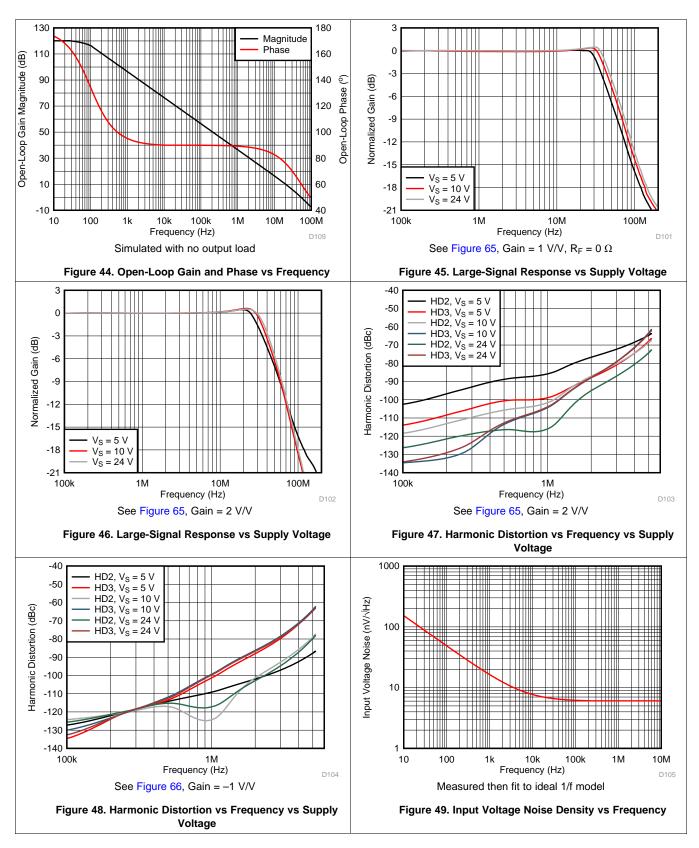


Figure 42. Output Short-Circuit Current vs Ambient Temperature




Figure 43. Input Offset Voltage vs Input Common-Mode Voltage

Copyright © 2017-2018, Texas Instruments Incorporated

TEXAS INSTRUMENTS

6.11 Typical Characteristics: ±2.375 V to ±12 V Split Supply

at V_O = 2 $V_{PP},\,R_F$ = 1 $k\Omega,\,R_L$ = 1 $k\Omega$ and T_A ≈ 25°C (unless otherwise noted)

Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Typical Characteristics: ±2.375 V to ±12 V Split Supply (continued)

at V_O = 2 V_{PP} , R_F = 1 $k\Omega$, R_L = 1 $k\Omega$ and T_A ≈ 25°C (unless otherwise noted)

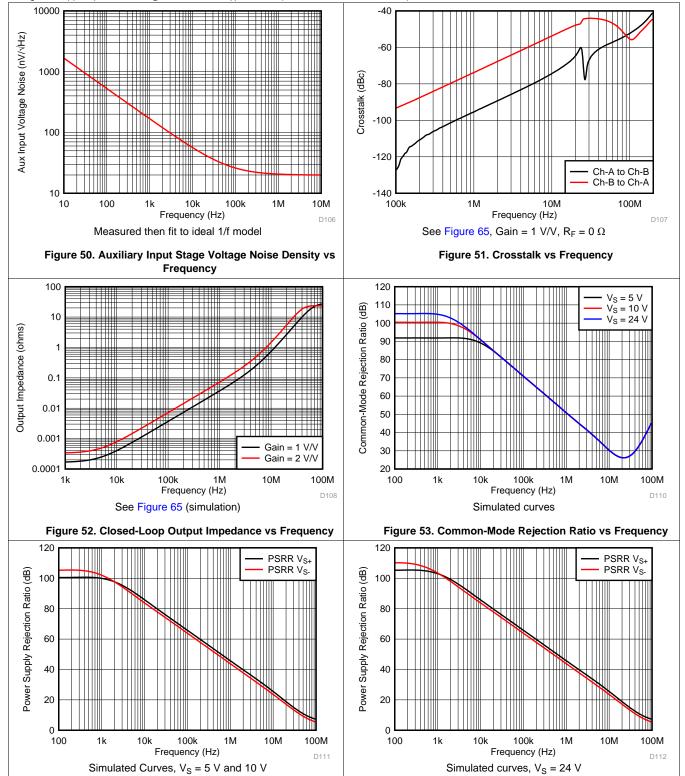


Figure 54. Power Supply Rejection Ratio vs Frequency

Figure 55. Power Supply Rejection Ratio vs Frequency

TEXAS INSTRUMENTS

Typical Characteristics: ±2.375 V to ±12 V Split Supply (continued)

at V_O = 2 V_{PP} , R_F = 1 $k\Omega$, R_L = 1 $k\Omega$ and T_A ≈ 25°C (unless otherwise noted)

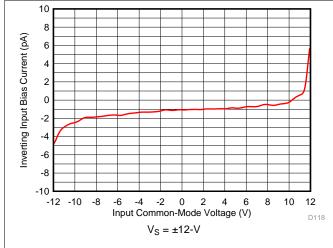


Figure 56. Input Bias Current vs Input Common-Mode Voltage

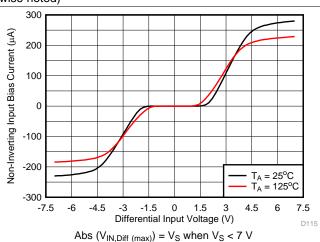


Figure 57. Input Bias Current vs Differential Input Voltage

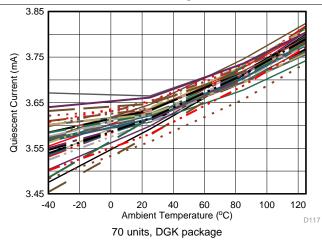


Figure 58. Quiescent Current vs Ambient Temperature

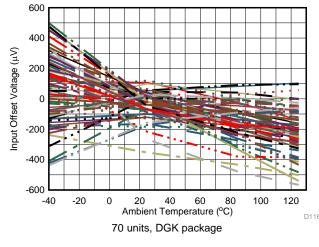
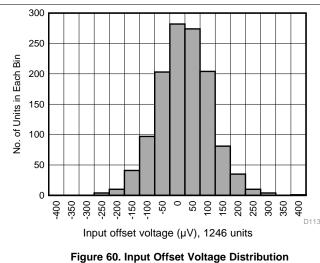
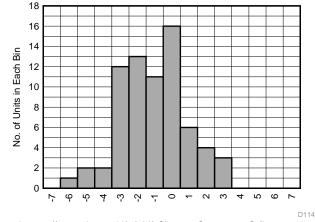




Figure 59. Input Offset Voltage vs Ambient Temperature

Input offset voltage drift (µV/°C), -40°C to +125°C fit, 70 units

Figure 61. Input Offset Voltage Drift Distribution

Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

7 Detailed Description

7.1 Overview

The OPA2810 is a dual-channel, FET-input, unity-gain stable voltage-feedback operational amplifier with extremely low input bias current across its common-mode input voltage range. The OPA2810, characterized to operate over a wide supply range of 4.75 V to 27 V, has a small-signal unity-gain bandwidth of 105 MHz and offers both excellent DC precision and dynamic AC performance at low quiescent power. The OPA2810 is fabricated on Texas Instrument's proprietary, high-speed SiGe BiCMOS process and achieves significant performance improvements over comparable FET-input amplifiers at similar levels of quiescent power. With a gain-bandwidth product (GBWP) of 70MHz, extremely high slew-rate (192 V/ μ s), and low-noise (6 nV/ \sqrt{Hz}) the OPA2810 is ideal in a wide range of data acquisition and signal processing applications. The OPA2810 includes input clamps to allow maximum input differential voltage of up to 7 V, making it suitable for use with multiplexers and processing of signals with fast transients. It achieves these benchmark levels of performance while consuming a typical quiescent current (Io) of 3.6 mA /channel.

The OPA2810 can source and sink large amounts of current without degradation in its linearity performance. The wide-bandwidth of the OPA2810 implies that the device has low output-impedance across a wide frequency range, thereby allowing the amplifier to drive capacitive loads up to 35 pF without requiring output isolation. This device is suitable for a wide range of data acquisition, test and measurement front-end buffer, impedance measurement, power analyzer, wideband photodiode transimpedance and signal processing applications.

7.2 Functional Block Diagram

The OPA2810 features a true high-impedance input stage including a JFET differential-input pair main stage and a CMOS differential-input auxiliary (Aux) stage operational within 2.5 V of the positive supply voltage. The bias current is limited to a maximum of 20 pA throughout the common-mode input range of the amplifier. Figure 62 shows a block diagram representation for the input stage of the OPA2810.

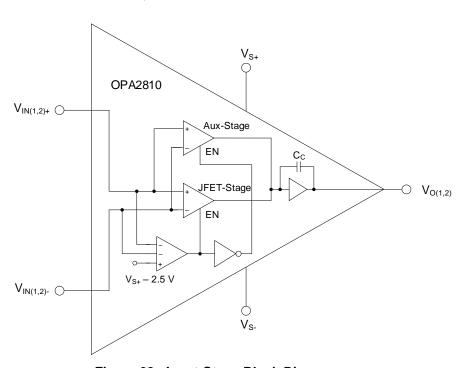


Figure 62. Input-Stage Block Diagram

Product Folder Links: OPA2810

Functional Block Diagram (continued)

The amplifier exhibits superior performance for high-speed signals (distortion, noise and input offset voltage) while the Aux stage enables rail-to-rail inputs and prevents phase reversal. The OPA2810 also includes input clamps which enable maximum input differential voltage of upto 7 V (lower of 7 V and total supply voltage). This architecture offers significantly greater differential input voltage capability as compared to one to two times the diode forward voltage drop maximum rating in standard amplifiers, and makes this device suitable for use with multiplexers and processing of signals with fast transients. The input bias currents are also clamped to maximum 300 μ A, as Figure 57 shows, which does not load the previous driver stage or require current-limiting resistors (except limiting current through the input ESD diodes when input common-mode voltages are greater than the supply voltages). This also enables the use of one of the channels as a comparator in systems which require an amplifier and a comparator for signal-gain and fault-detection, respectively. For the lowest offset, distortion and noise performance, limit the common-mode input voltage to the main JFET-input stage (greater than 2.5 V away from the positive supply).

The OPA2810 is a rail-to-rail output amplifier and swings to either of the rails at the output, as shown in Figure 16 for 10-V supply operation. This is particularly useful for inputs biased near the rails or when the amplifier is configured in a closed-loop gain such that the output approaches the supply voltage. When the output saturates, it recovers with 55 ns when inputs exceed the supply voltages by 0.5 V in an G = -1 V/V inverting gain with a 10-V supply. The outputs are short-circuit protected with the limits of Figure 17.

An amplifier phase margin reduces and it becomes unstable when driving a capacitive load (C_L) at the output, as Figure 63 shows. Use of a series resistor (R_S) between the amplifier output and load capacitance introduces a zero which cancels the pole formed by the amplifier output impedance and C_L in the open-loop transfer function. The OPA2810 drives capacitive loads of up to 35 pF without causing instability. It is recommended to use a series resistor for larger load capacitance values, as Figure 4 shows for OPA2810 configured as a unity-gain buffer.

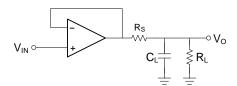


Figure 63. OPA2810 Driving Capacitive Load

7.2.1 ESD Protection

All the device pins are protected with internal ESD protection diodes to the power supplies as Figure 64 shows. These diodes provide moderate protection to input overdrive voltages above the supplies. The protection diodes can typically support 10-mA continuous input and output currents. The differential input clamps only limit the bias current when the input common-mode voltages are within the supply voltage range, whereas current limiting series resistors must be added at the inputs if common-mode voltages higher than the supply voltages are possible. Keep these resistor values as low as possible because using high values degrades noise performance and frequency response.

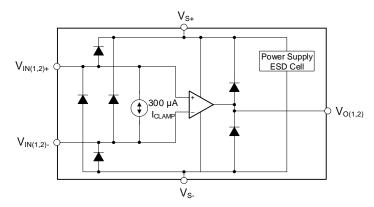


Figure 64. Internal ESD Protection

7.3 Feature Description

7.3.1 OPA2810 Comparison

Table 1 lists several members of the device family that includes the OPA2810.

Table 1. Related Operational Amplifier Products

DEVICE	V _{S±} (V)	I _Q / Channel (mA)	GBWP (MHz)	SLEW RATE (V/μs)	VOLTAGE NOISE (nV/√Hz)	AMPLIFIER DESCRIPTION
OPA2810	±12	3.6	70	192	6	Unity-gain stable FET input (Dual-ch)
THS4631	±15	13	210	900	7	Unity-gain stable FET input
OPA656	±6	14	230	290	7	Unity-gain stable FET input
OPA657	±6	14	1600	700	4.8	Gain of 7 stable FET input
OPA659	±6	32	350	2550	8.9	Unity-gain stable FET input

7.4 Device Functional Modes

7.4.1 Split-Supply Operation (±2.375 V to ±13.5 V)

To facilitate testing with common lab equipment, the OPA2810 can be configured to allow for split-supply operation (See OPA2810DGK Evaluation Module). This configuration eases lab testing because the mid-point between the power rails is ground, and most signal generators, network analyzers, oscilloscopes, spectrum analyzers and other lab equipment reference the inputs and outputs to ground. Figure 65 shows the OPA2810 configured as a noninverting amplifier and Figure 66 shows the OPA2810 configured as an inverting amplifier. For split-supply operation referenced to ground, the power supplies V_{S+} and V_{S-} are symmetrical around ground and $V_{REF} = GND$. Split-supply operation is preferred in systems where the signals swing around ground because of the ease-of-use; however, the system requires two supply rails.

7.4.2 Single-Supply Operation (4.75 V to 27 V)

Many newer systems use a single power supply to improve efficiency and reduce the cost of the extra power supply. The OPA2810 can be used with a single supply (negative supply set to ground) with no change in performance if the input and output are biased within the linear operation of the device. To change the circuit from split supply to a balanced, single-supply configuration, level shift all the voltages by half the difference between the power-supply rails. An additional advantage of configuring an amplifier for single-supply operation is that the effects of PSRR are minimized because the low-supply rail is grounded. See Single-Supply Op Amp Design Techniques application report for examples of single-supply designs.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

8.1.1 Selection of Feedback Resistors

The OPA2810 is a classic voltage feedback amplifier with each channel having two high-impedance inputs and a low-impedance output. Standard application circuits include the noninverting and inverting gain configurations as Figure 65 and Figure 66 show. The DC operating point for each configuration is level-shifted by the reference voltage V_{REF} which is typically set to midsupply in single-supply operation. V_{REF} is often connected to ground in split-supply applications.

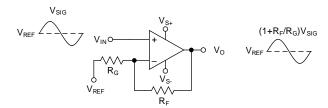


Figure 65. Noninverting Amplifier

$$V_{REF}$$
 V_{REF}
 V_{REF}
 V_{REF}
 V_{REF}
 V_{REF}
 V_{REF}
 V_{REF}
 V_{REF}
 V_{REF}
 V_{REF}

Figure 66. Inverting Amplifier

The closed-loop gain of an amplifier in noninverting configuration is shown in Equation 1.

$$V_{O} = V_{IN} \left(1 + \frac{R_{F}}{R_{G}} \right) + V_{REF}$$
(1)

The closed-loop gain of an amplifier in an inverting configuration is shown in Equation 2.

$$V_{O} = V_{IN} \left(-\frac{R_{F}}{R_{G}} \right) + V_{REF}$$
 (2)

The magnitude of the low-frequency gain is determined by the ratio of the magnitudes of the feedback resistor (R_F) and the gain setting resistor R_G . The order of magnitudes of the individual values of R_F and R_G offer a trade-off between amplifier stability, power dissipated in the feedback resistor network, and total output noise. The feedback network increases the loading on the amplifier output. Using large values of the feedback resistors reduces the power dissipated at the amplifier output. On the other hand, this increases the inherent voltage and

amplifier current noise contribution seen at the output while lowering the frequency at which a pole occurs in the feedback factor (β) . This pole causes a decrease in the phase margin at zero-gain crossover frequency and potential instability. Using small feedback resistors increases power dissipation and also degrades amplifier linearity due to a heavier amplifier output load. Figure 67 shows a representative schematic of the OPA2810 in an inverting configuration with the input capacitors shown.

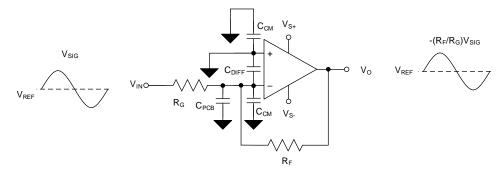


Figure 67. Inverting Amplifier with Input Capacitors

The effective capacitance seen at the amplifier's inverting input pin is shown in Equation 3 which forms a pole in β at a cut-off frequency of Equation 4.

$$C_{IN} = C_{CM} + C_{DIFF} + C_{PCB}$$
(3)

$$F_{C} = \frac{1}{2\pi R_{F} C_{IN}} \tag{4}$$

where:

- C_{CM} is the amplifier common-mode input capacitance
- C_{DIFF} is the amplifier differential input capacitance
- and, C_{PCB} is the PCB parasitic capacitance.

For low-power systems, greater the values of the feedback resistors, the earlier in frequency does the phase margin begin to reduce and cause instability. Figure 68 and Figure 69 show the loop gain magnitude and phase plots, respectively, for the OPA2810 simulation in TINA-TI configured as an inverting amplifier with values of feedback resistors varying by orders of magnitudes.

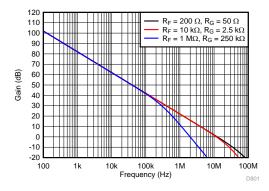


Figure 68. Loop-Gain vs. Frequency for Circuit of Figure 67

Figure 69. Loop-Gain Phase vs. Frequency for Circuit of Figure 67

A lower phase margin results in peaking in the frequency response and lower bandwidth as Figure 70 shows, which is synonymous with overshoot and ringing in the pulse response results. The OPA2810 offers a flat-band voltage noise density of 6 nV/ $\sqrt{\text{Hz}}$. It is recommended to select an R_F so the voltage noise contribution does not exceed that of the amplifier. Figure 71 shows the voltage noise density variation with value of resistance at 25°C. A 2-k Ω resistor exhibits a thermal noise density of 5.75 nV/ $\sqrt{\text{Hz}}$ which is comparable to the flatband noise of the OPA2810. Hence, it is recommended to use an R_F lower than 2 k Ω while being large enough to not dissipate excessive power for the output voltage swing and supply current requirements of the application. The Noise Analysis and the Effect of Resistor Elements on Total Noise section shows a detailed analysis of the various contributors to noise.

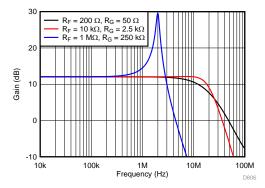


Figure 70. Closed-Loop Gain vs. Frequency for Circuit of Figure 67

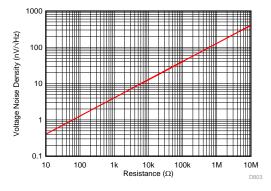


Figure 71. Thermal Noise Density vs Resistance

8.1.2 Noise Analysis and the Effect of Resistor Elements on Total Noise

The OPA2810 provides a low input-referred broadband noise voltage density of 6 nV/ $\sqrt{\text{Hz}}$ while requiring a low 3.6-mA quiescent supply current. To take full advantage of this low input noise, careful attention to the other possible noise contributors is required. Figure 72 shows the operational amplifier noise analysis model with all the noise terms included. In this model, all the noise terms are taken to be noise voltage or current density terms in nV/ $\sqrt{\text{Hz}}$ or pA/ $\sqrt{\text{Hz}}$.

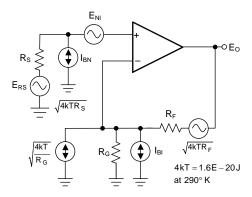


Figure 72. Operational Amplifier Noise Analysis Model

The total output spot noise voltage is computed as the square root of the squared contributing terms to the output noise voltage. This computation adds all the contributing noise powers at the output by superposition, then calculates the square root to get back to a spot noise voltage. Figure 72 shows the general form for this output noise voltage using the terms shown in Equation 5.

$$E_{O} = \sqrt{\left(E_{NI}^{2} + \left(I_{BN}R_{S}\right)^{2} + 4kTR_{S}\right)NG^{2} + \left(I_{BI}R_{F}\right)^{2} + 4kTR_{F}NG}$$
(5)

Dividing this expression by the noise gain (NG = 1 + R_F / R_G) shows the equivalent input referred spot noise voltage at the noninverting input; see Equation 6.

$$E_{N} = \sqrt{E_{NI}^{2} + (I_{BN}R_{S})^{2} + 4kTR_{S} + (\frac{I_{BI}R_{F}}{NG})^{2} + \frac{4kTR_{F}}{NG}}$$
(6)

Substituting large resistor values into Equation 6 can quickly dominate the total equivalent input referred noise. A source impedance on the noninverting input of $2-k\Omega$ adds a Johnson voltage noise term equal to that of the amplifier (6 nV/ $\sqrt{\text{Hz}}$).

Table 2 compares the noise contributions from the various terms when the OPA2810 is configured in a noninverting gain of 5V/V as Figure 73 shows. Two cases are considered where the resistor values in case 2 are 10x the resistor values in case 1. The total output noise in case 1 is $31.3 \text{ nV/}\sqrt{\text{Hz}}$ while the noise in case 2 is $49.7 \text{ nV/}\sqrt{\text{Hz}}$. The large value resistors in case 2 dilute the benefits of selecting a low noise amplifier like the OPA2810. To minimize total system noise, reduce the size of the resistor values. This increases the amplifiers output load and results in a degradation of distortion performance. The increased loading increases the dynamic power consumption of the amplifier. The circuit designer must make the appropriate tradeoffs to maximize the overall performance of the amplifier to match the system requirements.

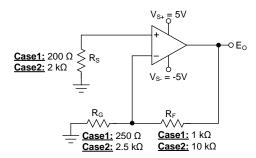


Figure 73. Comparing Noise Contributors for Two Cases With the Amplifier in a Noninverting Gain of 5 V/V

Table 2. Comparing Noise Contributions for the Circuit in Figure 73

rable in Companing Noise Community for the Chester in Figure 10											
		Case1					Case2				
Noise Source	Output Noise Equation	Noise Source Value	Voltage Noise Contribution (nV/√Hz)	Noise Power Contribution (nV²/Hz)	Contribution (%)	Noise Source Value	Voltage Noise Contribution (nV/√Hz)	Noise Power Contribution (nV²/Hz)	Contribution (%)		
Source resistor, R _S	E _{RS} (1+R _F /R _G)	1.82 nV/√Hz	9.1	82.81	7.77	5.7 <u>6</u> nV/√Hz	28.8	829.44	32.41		
Gain resistor, R _G	E _{RG} (R _F /R _G)	2.04 nV/√Hz	8.16	66.59	6.24	6.44 nV/√Hz	25.76	663.58	25.93		
Feedback resistor, R _F	E _{RF}	4.07 nV/√ Hz	4.07	16.57	1.55	12.87 nV/√Hz	12.87	165.64	6.47		
Amplifier voltage noise, E _{NI}	E _{NI} (1+R _F /R _G)	6 nV/√Hz	30	900	84.43	6 nV/√Hz	30	900	35.17		
Inverting current noise, I _{BI}	I_{BI} $(R_F R_G)$	5 fA/√Hz	5.0E-3	_	_	5 fA/√Hz	50E-3	_	_		
Noninverting current noise, I _{BN}	I _{BN} R _S (1+R _F /R _G)	5 fA/√Hz	1.0E-3	_	_	5 fA/√Hz	10E-3	_	_		

Product Folder Links: OPA2810

Copyright © 2017–2018, Texas Instruments Incorporated

8.2 Typical Applications

8.2.1 Transimpedance Amplifier

The high GBWP and low input voltage and current noise for the OPA2810 make it an ideal wideband transimpedance amplifier for moderate to high transimpedance gains.

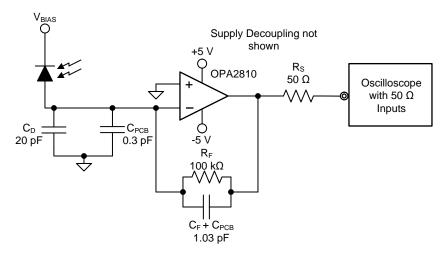


Figure 74. Wideband, High-Sensitivity, Transimpedance Amplifier

8.2.1.1 Design Requirements

Design a high-bandwidth, high-gain transimpedance amplifier with the design requirements listed in Table 3.

Table 3. Design Requirements

TARGET BANDWIDTH (MHz)	TRANSIMPEDANCE GAIN (K Ω)	PHOTODIODE CAPACITANCE (pF)
> 2	100	20

8.2.1.2 Detailed Design Procedure

Designs that require high bandwidth from a large area detector with relatively high transimpedance gain benefit from the low input voltage noise of the OPA2810. This input voltage noise is peaked up over frequency by the diode source capacitance, and can, in many cases, become the limiting factor to input sensitivity. The key elements to the design are the expected diode capacitance (C_D) with the reverse bias voltage (V_{BIAS}) applied, the desired transimpedance gain, R_F , and the GBWP for the OPA2810 (70 MHz). Figure 74 shows a transimpedance circuit with the parameters as described in Table 3. With these three variables set (and including the parasitic input capacitance for the OPA2810 and the PCB added to C_D), the feedback capacitor value (C_F) may be set to control the frequency response. Transimpedance Considerations for High-Speed Amplifiers discusses using high-speed amplifiers for transimpedance applications. To achieve a maximally-flat second-order Butterworth frequency response, set the feedback pole to:

$$\frac{1}{2\pi R_F C_F} = \sqrt{\frac{GBWP}{4\pi R_F C_D}} \tag{7}$$

The input capacitance of the amplifier is the sum of the common-mode and differential capacitance (2.5 + 0.5) pF. The parasitic capacitance from the photodiode package and the PCB is approximately 0.3 pF. Using Equation 3, this results in a total input capacitance of $C_D = 23.3$ pF. From Equation 7, set the feedback pole at 1.55 MHz. Setting the pole at 1.55 MHz requires a total feedback capacitance of 1.03 pF.

The approximate -3-dB bandwidth of the transimpedance amplifier circuit is shown in:

$$f_{-3dB} = \sqrt{GBWP / (2\pi R_F C_D)} Hz \tag{8}$$

Equation 8 estimates a closed-loop bandwidth of 2.19 MHz. Figure 75 and Figure 76 show the loop-gain magnitude and phase plots from the TINA-TI simulations of the transimpedance amplifier circuit of Figure 74. The $1/\beta$ gain curve has a zero from R_F and C_{IN} at 70 kHz and a pole from R_F and C_F cancelling the $1/\beta$ zero at 1.5 MHz resulting in a 20 dB/decade rate-of-closure at the loop gain crossover frequency (frequency where $A_{OL} = 1/\beta$), ensuring a stable circuit. A phase margin of 62° is obtained with a closed-loop bandwidth of 3 MHz and 100-k Ω transimpedance gain.

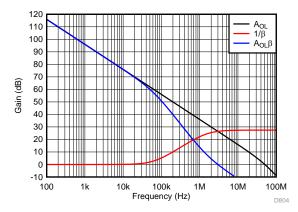


Figure 75. Loop-Gain Magnitude vs. Frequency for Transimpedance Amplifier Circuit of Figure 74

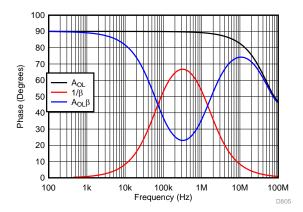


Figure 76. Loop-Gain Phase vs. Frequency for Transimpedance Amplifier Circuit of Figure 74

8.2.2 Multichannel Sensor Interface

High-Z input amplifiers are particularly useful when interfaced with sensors that have relatively high output impedance. Such multichannel systems usually interface these sensors with the signal chain through a multiplexer. Figure 77 shows one such implementation using an amplifier for interface with each sensor, and driving into an ADC through a multiplexer. An alternate circuit, shown in Figure 78, may use a single higher GBWP and fast-settling amplifier at the output of the multiplexer. This gives rise to large signal transients when switching between channels, where the settling performance of the amplifier and maximum allowed differential input voltage limits signal chain performance and amplifier reliability, respectively.

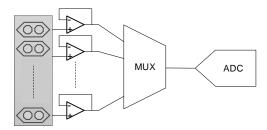


Figure 77. Multichannel Sensor Interface Using Multiple Amplifiers

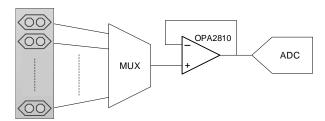


Figure 78. Multichannel Sensor Interface Using a Single Higher GBWP Amplifier

Figure 79 shows the output voltage and input differential voltage when a 8-V step is applied at the noninverting terminal of the OPA2810 configured as a unity-gain buffer of Figure 78.

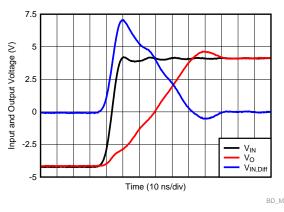


Figure 79. Large-Signal Transient Response Using OPA2810

Because of the fast input transient, the amplifier is slew-limited and the inputs cease to track each other (a maximum $V_{\text{IN,Diff}}$ of 7V is seen in Figure 79) until the output reaches its final value and the negative feedback loop is closed. For standard amplifiers with a 0.7-1.5V maximum $V_{\text{IN,Diff}}$ rating, it is required to use current-limiting resistors in series with the input pins to protect from irreversible damage, which also limits the device frequency response. The OPA2810 has built-in input clamps that allow the application of as much as 7V of $V_{\text{IN,Diff}}$, with no external resistors required and no damage to the device or a shift in performance specifications. Such an input-stage architecture coupled, with its fast settling performance, makes the OPA2810 a good fit for multichannel sensor multiplexed systems.

9 Power Supply Recommendations

The OPA2810 is intended for operation on supplies ranging from 4.75 V to 27 V. The OPA2810 may be operated on single-sided supplies, split and balanced bipolar supplies or unbalanced bipolar supplies. Operating from a single supply can have numerous advantages. With the negative supply at ground, the DC errors due to the –PSRR term can be minimized. Typically, AC performance improves slightly at 10-V operation with minimal increase in supply current. Minimize the distance (< 0.1") from the power supply pins to high-frequency, 0.01 uF decoupling capacitors. A larger capacitor (2.2 uF typical) is used along with a high-frequency, 0.01 uF supply-decoupling capacitor at the device supply pins. For single-supply operation, only the positive supply has these capacitors. When a split-supply is used, use these capacitors from each supply to ground. If necessary, place the larger capacitors further from the device and share these capacitors among several devices in the same area of the printed circuit board (PCB). An optional supply decoupling capacitor across the two power supplies (for split-supply operation) reduces second harmonic distortion.

10 Layout

10.1 Layout Guidelines

Achieving optimum performance with a high-frequency amplifier like the OPA2810 requires careful attention to board layout parasitics and external component types. The OPA2810EVM can be used as a reference when designing the circuit board. Recommendations that optimize performance include:

- 1. **Minimize parasitic capacitance** to any AC ground for all of the signal I/O pins. Parasitic capacitance on the output and inverting input pins can cause instability—on the noninverting input, it can react with the source impedance to cause unintentional band-limiting. To reduce unwanted capacitance, open a window around the signal I/O pins in all of the ground and power planes around those pins. Otherwise, ground and power planes must be unbroken elsewhere on the board.
- 2. **Minimize the distance** (< 0.1") from the power-supply pins to high-frequency 0.01-μF decoupling capacitors. At the device pins, do not allow the ground and power plane layout to be in close proximity to the signal I/O pins. Avoid narrow power and ground traces to minimize inductance between the pins and the decoupling capacitors. The power-supply connections must always be decoupled with these capacitors. Larger (2.2-μF to 6.8-μF) decoupling capacitors, effective at lower frequency, must also be used on the supply pins. These can be placed somewhat farther from the device and shared among several devices in the same area of the PC board.
- 3. Careful selection and placement of external components preserve the high frequency performance of the OPA2810. Resistors must be a low reactance type. Surface-mount resistors work best and allow a tighter overall layout. Metal film and carbon composition axially leaded resistors can also provide good high frequency performance. Again, keep their leads and PCB trace length as short as possible. Never use wirewound type resistors in a high frequency application. Because the output pin and inverting input pin are the most sensitive to parasitic capacitance, always position the feedback and series output resistor, if any, as close as possible to the output pin. Other network components, such as noninverting input termination resistors, must also be placed close to the package. Even with a low parasitic capacitance shunting the external resistors, excessively high resistor values can create significant time constants that can degrade performance. Good axial metal film or surface mount resistors have approximately 0.2 pF in shunt with the resistor. For resistor values > 10 k Ω , this parasitic capacitance can add a pole or zero close to the GBWP of 70 MHz and subsequently affects circuit operation. Keep resistor values as low as possible consistent with load driving considerations. Lowering the resistor values keep the resistor noise terms low, and minimize the effect of its parasitic capacitance, however lower resistor values increase the dynamic power consumption because R_F and R_G become part of the amplifiers output load network. Transimpedance applications (see Transimpedance Amplifier) can use whatever feedback resistor is required by the application as long as the feedback compensation capacitor is set considering all parasitic capacitance terms on the inverting node.
- 4. Connections to other wideband devices on the board may be made with short direct traces or through onboard transmission lines. For short connections, consider the trace and the input to the next device as a lumped capacitive load. Relatively wide traces (50 mils to 100 mils) must be used, preferably with ground and power planes opened up around them. Estimate the total capacitive load and set R_S for sufficient phase margin and stability. Low parasitic capacitive loads (< 35 pF) may not need an R_S because the OPA2810 is nominally compensated to operate with a 35-pF parasitic load. Higher parasitic capacitive loads without an R_S are allowed as the signal gain increases (increasing the unloaded phase margin) If a long trace is required, and the 6-dB signal loss intrinsic to a doubly-terminated transmission line is acceptable, implement

Product Folder Links: *OPA2810*

Copyright © 2017-2018, Texas Instruments Incorporated

Layout Guidelines (continued)

a matched impedance transmission line using microstrip or stripline techniques (consult an ECL design handbook for microstrip and stripline layout techniques). A $50-\Omega$ environment is normally not necessary onboard, and a higher impedance environment improves distortion. With a characteristic board trace impedance defined based on board material and trace dimensions, a matching series resistor into the trace from the output of the OPA2810 is used as well as a terminating shunt resistor at the input of the destination device. Remember also that the terminating impedance is the parallel combination of the shunt resistor and the input impedance of the destination device— this total effective impedance must be set to match the trace impedance. If the 6-dB attenuation of a doubly-terminated transmission line is unacceptable, a long trace can be series-terminated at the source end only. Treat the trace as a capacitive load in this case and set the series resistor value to obtain sufficient phase margin and stability. This does not preserve signal integrity as well as a doubly-terminated line. If the input impedance of the destination device is low, the signal attenuates because of the voltage divider formed by the series output into the terminating impedance.

- 5. **Take care to design the PCB layout for optimal thermal dissipation.** For the extreme case of 125°C operating ambient, using the approximate maximum 177.2°C/W for the two packages, and an internal power of 24-V supply × 9-mA 125°C supply current (both amplifiers) gives a maximum internal power dissipation of 216 mW. This power gives a 38°C increase from ambient to junction temperature. Load power adds to this value and this dissipation must also be calculated to determine the worst-case safe operating point.
- 6. **Socketing a high speed part like the OPA2810 is not recommended.** The additional lead length and pinto-pin capacitance introduced by the socket can create an extremely troublesome parasitic network which can make it almost impossible to achieve a smooth, stable frequency response. Best results are obtained by soldering the OPA2810 onto the board.

10.2 Layout Example

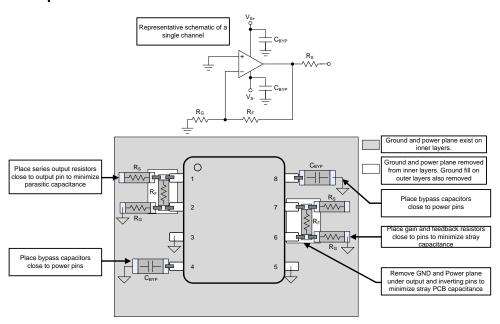


Figure 80. Layout Recommendation

Product Folder Links: OPA2810

10.3 Thermal Considerations

The OPA2810 does not require heat sinking or airflow in most applications. Maximum allowed junction temperature sets the maximum allowed internal power dissipation. Do not allow the maximum junction temperature to exceed 150°C.

Operating junction temperature (T_J) is given by $T_A + P_D \times \theta_{JA}$. The total internal power dissipation (P_D) is the sum of quiescent power (P_{DQ}) and additional power dissipated in the output stage (P_{DL}) to deliver load power. Quiescent power is the specified no-load supply current times the total supply voltage across the part. P_{DL} depends on the required output signal and load but would, for a grounded resistive load, be at a maximum when the output is fixed at a voltage equal to half of either supply voltage (for equal split-supplies). Under this condition $P_{DL} = V_S^2 / (4 \times R_L)$ where R_L includes feedback network loading.

The power in the output stage and not into the load that determines internal power dissipation.

As a worst-case example, compute the maximum T_J using an OPA2810-DGK (VSSOP package) configured as a unity gain buffer, operating on ± 12 -V supplies at an ambient temperature of 25°C and driving a grounded 500- Ω load.

 $P_D = 24 \text{ V} \times 9 \text{ mA} + 12^2 / (4 \times 500 \Omega) = 288 \text{ mW}$

Maximum $T_J = 25^{\circ}C + (0.288 \text{ W} \times 177.2^{\circ}C/W) = 76^{\circ}C$, which is well below the maximum allowed junction temperature of 150°C.

Product Folder Links: *OPA2810*

Copyright © 2017-2018, Texas Instruments Incorporated

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- OPA2810DGK Evaluation Module
- Single-Supply Op Amp Design Techniques
- Transimpedance Considerations for High-Speed Amplifiers
- Blog: What you need to know about transimpedance amplifiers part 1
- Blog: What you need to know about transimpedance amplifiers part 2
- Noise Analysis for High-Speed Op Amps
- Tina model and simulation tool

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: OPA2810

PACKAGE OPTION ADDENDUM

1-Jul-2018

PACKAGING INFORMATION

www.ti.com

Orderable Device		Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Giy	(2)	(6)	(3)		(4/5)	
OPA2810IDCNT	PREVIEW	SOT-23	DCN	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	2810	
OPA2810IDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	2810	Samples
OPA2810IDGKT	ACTIVE	VSSOP	DGK	8	250	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	2810	Samples
XOPA2810IDCNT	ACTIVE	SOT-23	DCN	8	250	TBD	Call TI	Call TI	-40 to 125		Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

1-Jul-2018

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

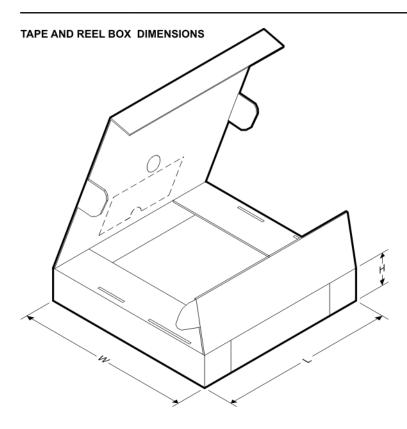
PACKAGE MATERIALS INFORMATION

www.ti.com 29-Jun-2018

TAPE AND REEL INFORMATION

Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

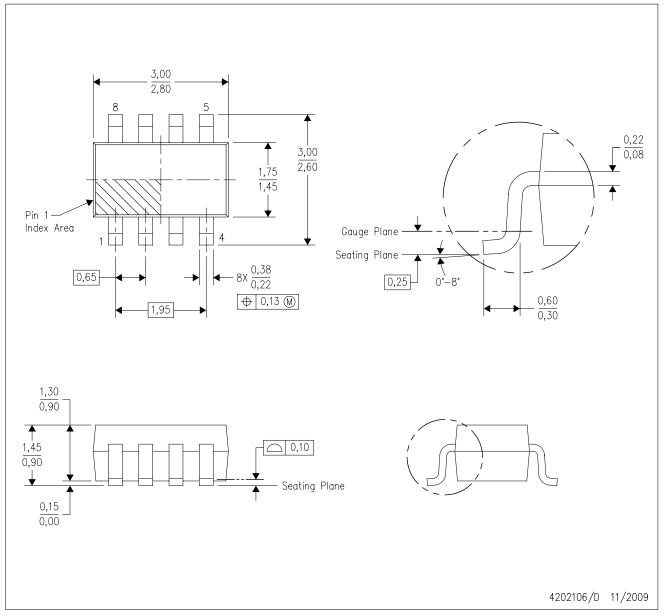


*All dimensions are nominal

7 til dillionolorio dio nominal												
Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA2810IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
OPA2810IDGKT	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 29-Jun-2018

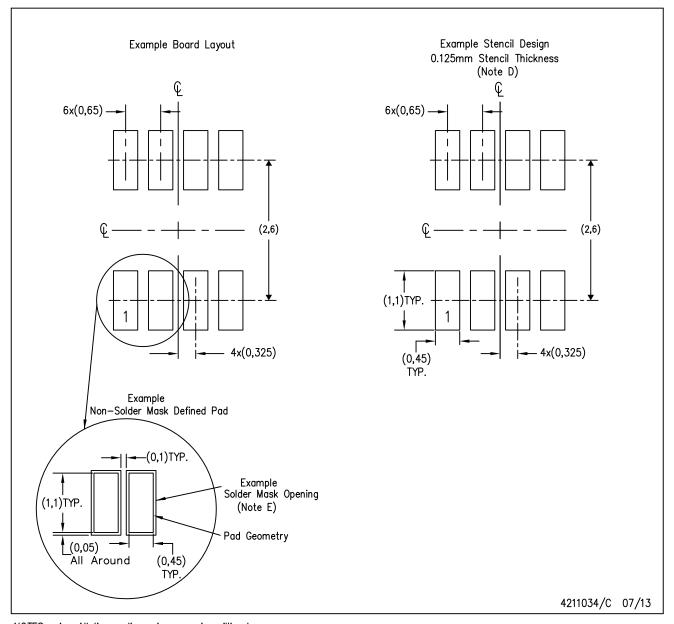


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
OPA2810IDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0	
OPA2810IDGKT	VSSOP	DGK	8	250	366.0	364.0	50.0	

DCN (R-PDSO-G8)

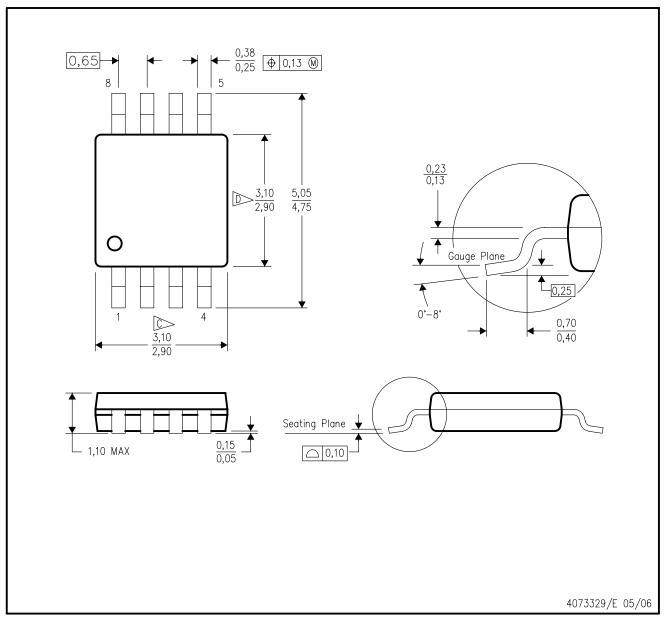
PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Package outline exclusive of metal burr & dambar protrusion/intrusion.
- D. Package outline inclusive of solder plating.
- E. A visual index feature must be located within the Pin 1 index area.
- F. Falls within JEDEC MO-178 Variation BA.
- G. Body dimensions do not include flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

DCN (R-PDSO-G8)

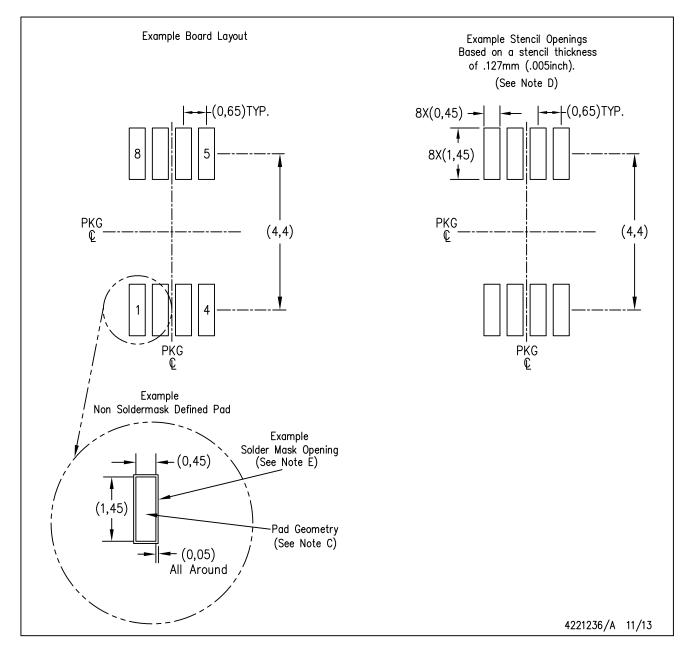
PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.